Balancing Diophantine triples with distance 1

نویسندگان

  • Murat Alp
  • Nurettin Irmak
  • László Szalay
چکیده

For a positive real number w let the Balancing distance ‖w‖B be the distance from w to the closest Balancing number. The Balancing sequence is defined by the initial values B0 = 0, B1 = 1 and by the binary recurrence relation Bn+2 = 6Bn+1 − Bn , n ≥ 0. In this paper, we show that there exist only one positive integer triple (a, b, c) such that the Balancing distances ‖ab‖B , ‖ac‖B and ‖bc‖B all are exactly 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balancing diophantine triples

In this paper, we show that there are no three distinct positive integers a, b and c such that ab + 1, ac + 1, bc + 1 all are balancing numbers.

متن کامل

Strong Diophantine Triples

We prove that there exist infinitely many triples a, b, c of non-zero rationals with the property that a + 1, b + 1, c + 1, ab + 1, ac + 1 and bc + 1 are perfect squares.

متن کامل

Diophantine Triples with Values in the Sequences of Fibonacci and Lucas Numbers

Let FL = {1, 2, 3, 4, 5, 7, 8, 11, 13, 18, 21, . . .} be the set consisting of all Fibonacci and Lucas numbers with positive subscripts. We find all triples (a, b, c) of positive integers a < b < c such that ab + 1, ac+ 1, bc+ 1 are all members of FL.

متن کامل

On the Rank of Elliptic Curves Coming from Rational Diophantine Triples

We construct a family of Diophantine triples {c1(t), c2(t), c3(t)} such that the elliptic curve over Q(t) induced by this triple, i.e.: y = (c1(t) x + 1)(c2(t) x + 1)(c3(t) x + 1) has torsion group isomorphic to Z/2Z× Z/2Z and rank 5. This represents an improvement of the result of A. Dujella, who showed a family of this kind with rank 4. By specialization we obtain two examples of elliptic cur...

متن کامل

Pellans Sequence and Its Diophantine Triples

We introduce a novel fourth order linear recurrence sequence {Sn} using the two periodic binary recurrence. We call it “pellans sequence” and then we solve the system ab+ 1 = Sx, ac + 1 = Sy bc+ 1 = Sz where a < b < c are positive integers. Therefore, we extend the order of recurrence sequence for this variant diophantine equations by means of pellans sequence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Periodica Mathematica Hungarica

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2015